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Dynamics of the Schliigl Models on Lattices of 
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The steady states and dynamics of the two Schl6gl models on one- and two- 
dimensional lattices are studied using master equation techniques in tandem 
with simulations. It is found that the classic bistable behavior of model II is 
modified to monostable behavior at low dimension. An explanation of this 
modification is proposed in terms of the effective potential that appears in the 
dynamical equations on considering the significant effect of fluctuation correla- 
tions. The behavior can be modeled by replacing the transient average fluctuation 
correlation by its asymptotic value plus Gaussian white noise and analyzing the 
resulting effective potential obtained from the Fokker-Planck equation with 
multiplicative noise. For model I the transcritical bifurcation point is shifted to 
lower values of the forward rate k2 of the second step of the reaction scheme 
and this shift can also be explained via an effective potential as a function of the 
average asymptotic fluctuation correlation. Further addition of noise to the 
asymptotic value is irrelewmt for this model since the noise term in the corre- 
sponding Fokker-Planck equation turns out to be purely additive. 

KEY WORDS:  Lattice models; master equations; low-dimensional systems; 
nonequilibrium phenomena; nonlinear dynamics; dissipative systems; chemical 
reactions. 

1. I N T R O D U C T I O N  

The study of the effect of fluctuations on the macroscopic behavior of low- 
dimensional systems has been a subject of intensive research for many 
years. The existence of substantial fluctuation correlations in these systems 
has been found to drastically change their behavior from that of the mean 
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field (MF) valid at high dimension. The crossover from dimension-depend- 
ent behavior at low dimensions to MF behavior at some "upper critical 
dimension" has been investigated for many different kinds of statistical 
systems, ranging from spin models ~p to random walks ~2~ and chemical 
reactionsJ 3"4~ For  chemical reactions this crossover has been found to 
occur at a critical average coordination number of the lattice that depends 
on the molecularity of the reaction or the degree of nonlinearity of the 
dynamics.~5.6j 

On the other hand, the study of systems far from equilibrium ~7~ has 
generated great interest and led to the observation of a wide variety of 
phenomena, ranging from those analogous to equilibrium thermodynamic 
phase transitions, such as bistability, ~3~ to chaos. The Schl6gl models I and 
II ~sl are prototypes of such nonequilibrium systems with the macroscopic 
rate laws describing second-order and first-order phase transitions, respec- 
tively, in the average steady-state concentration of X particles. They are 
comprised of the two reaction steps 

kl 
A + ( n - 1 ) X .  "nX 

k; 

k2 
X .  "B  (1) 

k~ 

where n = 2 for model I and n = 3 for model II. The concentrations A and 
B of A and B particles are kept constant by contact with a reservoir or 
appropriate feeding; thus the concentration X is the only variable quantity 
in the macroscopic dynamics. The system is thus open and maintained at 
far-from-equilibrium conditions by controlling the value of the ratio of con- 
centrations A/B far from its equilibrium value of k'~ k'/k~k2. In particular, 
model II is found to undergo a bifurcation to a bistable regime at certain 
critical values of the reservoir concentrations A and B. Within this regime 
the evolution of the system toward its steady state is found to be described 
by a quartic macroscopic potential with the system evolving to the mini- 
mum that is within the basin of attraction of its initial state. 

Our aim in this paper is to study the Schl6gl models (1) on one- and 
two-dimensional lattices in order to incorporate the microscopic con- 
straints involved and to investigate the effect of fluctuations on such dis- 
sipative systems. We shall determine how the macroscopic steady states 
and dynamics of the system are modified by the presence of fluctuations 
due to their being embedded in a lattice of low dimension. 

In Sections 2-4 we analyze the behavior of model II [n = 3 in Eq. (1)] 
in one and two dimensions. In Section 2 we describe the macroscopic (MF)  
dynamics of the model and compare this with the behavior in low spatial 
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dimension as shown by results of simulations. In Section 3 we describe a 
model that is a variant of the full Schl6gl model (1) and observe that it 
displays the same behavior as the full model in d =  1 and d =  2. We then 
proceed to solve for the dynamics of this model using a Glauber-type 
master equation formalism. The solution of the coupled differential equa- 
tions thus obtained for the average concentration and the nearest neighbor 
(nn) fluctuation correlation are found to be almost identical to results of 
low-dimensional simulations. Making use of the functional form of these 
equations, we are able to explain the anomalous behavior of the model in 
low dimensions in terms of an effective potential that is quite different from 
the macroscopic one in the presence of significant fluctuation correlations. 
In Section 4 we present a more complete analysis of the effect of fluctuation 
correlations on the potential. Here the fluctuation correlations are treated 
as strong multiplicative noise and the corresponding Fokker-Planck equa- 
tion yields the effective potential. We find that the fluctuation correlations 
turn the bistable macroscopic potential into an effectively monostable one 
with stable state at a concentration equal to or less than that of the lower 
stable state of the corresponding macroscopic potential. 

In Section 5 we discuss the first Schl6gl model [ n = 2  in (1)] and 
apply the methods of sections 2-4 to describe and explain its behavior on 
low-dimensional lattices. The transcritical bifurcation observed for the 
macroscopic case is found to be modified at low dimension. A sharp tran- 
sition at a significantly lower value of k2 is observed and can also be 
explained in terms of the effect of fluctuation correlations and the resulting 
effective potential. 

All d =  1 simulations reported in this paper were done on a ring of 104 
particles averaged over 100 realizations. We also simulated systems of l0 s 
particles and found no significant change in either the steady-state proper- 
ties or the dynamics. We therefore retained the N =  10 4 results for reasons 
of computational convenience. Similarly, all d =  2 simulations were done 
on a 200 x 200 square lattice with periodic boundary conditions (i.e., a 
torus). Again, we also simulated 500 x 500 lattices to ensure by comparison 
the absence of finite-size effects in the smaller system. 

2. S C H L O G L  I1: M A C R O S C O P I C  D Y N A M I C S  A N D  
S I M U L A T I O N S  

The macroscopic dynamics of Schl6gl's second model [Eq. (1) with 
n = 3] is described by the rate law 

dX  8 Vo( X)  
dt - k'tX3 + ~  )'= 8 X  (2) 
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where we have set o~=k]A and 7=k~B. Here Vo(X) is the quartic macro- 
scopic potential whose minima determine the stable states of the system. 
For k'_, = 0 and k 2 :~ 0 the system is bistable for k'] k2 < ~2/4. There is a 
stable steady state at Xj = 0 and the two other steady states are at X3.2 = 
(o~+_x/oL'--4k'~k2)/2k'~; of these, X, is unstable and X3 stable (see picture 
of potential on the right of Fig. 1). For k',-#0 and other parameters 
at values within the bistable regime the lower stable state is at X~ > 0 
(see right of Fig. 2). We shall frequently refer to the two sets of parameters 
used in Figs. 1 and 2, respectively, as parameter set 1 (kt = 20.0, k'~ = 3.0, 
k2=0.01,  k ' = 0 . 0 ,  A =0.1,  and B=0 .05 )  and parameter set 2 (k~ =20.0, 
k'~ =3.0, k2=0.35133, k'2 =0.36, A =0.1, and B=0.05). 

We simulate the dynamics of this model on one- and two-dimensional 
(square) lattices as follows: the first (trimolecular) step of Eq. (1) is realized 
as in ref. 9 with an A particle converting to X and vice versa with respective 
rates kj and k't if at least two of its neighbors is an X particle. The second 
(unimolecular) step is lattice independent, since the neighbors play no role. 
The concentrations of A and B particles are kept constant by randomly 
picking an A/B (vacant) site and removing (creating) an A/B every time 
one is created (removed) elsewhere by the Schl6gl reaction. The results of 
these simulations are shown in Figs. 1 and 2 along with those of the corre- 
sponding macroscopic dynamics described by Eq. (2). We observe a striking 
difference between the behavior of the low-dimensional system and the 
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Fig. I. Results of d =  I(z = 2) s i m u l a t i o n s  [ S I M )  and solution of macroscopic equations 
[ M A C )  Ibr the evolution of the concentration Xit) for the second Schl6gl model with 
parameter set I (k t  = 20.0. k] = 3.0, k_, = 0 .0 l ,  a n d  k "  = 0.0). The concentrations o f  A a n d  B 

particles are maintained at  A = 0 . 1  a n d  B = 0.05, respectively. The macroscopic potential I", 

with minima at X~ = 0 a n d  X~ = 0.66 is shown at the right with diamonds marking the stable 
states. 
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Fig. 2. Results of d =  1 ( - =  2) s imula t ions  (SIM)  and solution of macroscopic equations 
( M A C )  for the evolution of the concentration X(t) for the second Schl6gl model with 
parameter set 2 (k i =  20.0, k'  I = 3.0, k2 = 0.35133, and/, '~ = 0.36). The concentrations of A and 
B particles are maintained at A = 0.1 and B = 0.05, respectively. The macroscopic potential V. 

with minima at X~ = 0 . 1 0  and X ~ = 0 . 4 2  is shown at the right with diamonds marking the 
stable states. 

corresponding macroscopic dynamics. For parameter set 1 with k ' = 0 ,  
where X =  0 is stable, the one-dimensional system (coordination number 
- = 2 )  always evolves to X t = 0  (see Fig. I) even when the other steady 
state at X3 is far more stable and the system is started above X~ (see pic- 
ture of potential on the right of Fig. 1 ). For parameter set 2 with k" :~ 0 the 
system evolves to a concentration that is clearly lower than that of the 
lower macroscopic steady state Xt :~0 (see Fig. 2), again even for the case 
when X3 is more stable (potential on right). We note that the non-MF 
steady states realized by the low-dimensional system in this case are free of 
memory effects, unlike those observed in refs. 9 and l0 on low-dimensional 
lattices. Here the dependence on the initial states is only in the sense of 
bistability (i.e., which basin of attraction the initial state belongs to) and 
the steady-state concentration does not depend continuously on that of the 
initial state as in ref. 9. 

In the following sections we explain this deviation from the macroscopic 
evolution equations in terms of the fluctuation correlations that modify the 
effective potential and thus the stable states and dynamics of the system. 

3. TWO-SPECIES SCHLOGL MODEL II 

In order to develop analytic insight into the phenomena described 
above, we now consider a variation on the classic Schl6gl model II. This 
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new model consists only of X and A particles that undergo the reaction 
steps 

kl 
A + 2 X .  " 3 X  

k; 

k2 
x .  "A (3) k'., 

The system is kept artificially far from equilibrium by maintaining 
k'~ k'z/k, k2 4= 1 without any reference to concentrations being kept constant 
by contact with reservoirs. In the context of chemical kinetics this may be 
achieved, for instance, by coupling one of the steps to an external field or 
to a catalytic cycle fed by a mechanism independent of the system at hand. 

The lattice is kept fully occupied; thus A = 1 -  X and once again the 
concentration X can be taken to be the only variable in the macroscopic 
dynamics. We note that this model is also bistable and follows the macro- 
scopic evolution equation 

dX - ( k ,  +k't) XS + k , X 2 - ( k 2 +  k~) X+k'2= OVo(X) 
d---[ = 8X (4) 

Thus the macroscopic dynamics of this model is exactly the same as for the 
full Schl6gl model (1) with the appropriate adjustment of parameters 
a ~ k l ,  k'l ~ kl  + k'l, k2--* k2 + k~; and ), ~ k~. 
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Fig. 3. Results  of d =  1 ( z = 2 )  s imula t ions  (SIM),  solution of coupled differential equations 
(CH2),  and solution of the macroscopic equations (MAC) for the evolution of the concentra- 
tion X{t) for the two-species trimolecular model with parameter set 1' (kt  =2 .0 ,  k] = 1.0, 

k2 = 0.01 and k', = 0.0). The macroscopic potential V. with minima at X~ = 0 and  X.~ = 0.66 is 
shown at the right with diamonds marking the stable states. 
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Next we simulate this model in one and two dimensions for two dif- 
ferent sets of parameters equivalent to parameter sets 1 and 2 for the full 
Schl6gl model to see how this model might deviate from the macroscopic 
behavior. These are parameter set 1' (k1=2.0 ,  k'~=l.0,  k2=0.01,  and 
k~=0 .0 )  and parameter set 2' (k~=2.0 ,  k ' t= l .0 ,  k2=0.333,  and 
k~ = 0.018). The results (see curves marked SIM in Figs. 3 and 4) indicate 
that this model behaves at low dimensions in an identical way to the full 
Schl6gl model, evolving for k2 = 0 to the lower stable state X~ = 0 of the 
macroscopic potential Vo(X) and for k2 4:0 to a state below X~. Thus, the 
additional compensatory dynamics of random creation and removal of A 
and B particles (to maintain their concentrations constant) in the full 
Schl6gl model does not create any special features at this level. The com- 
bined role of vacancies and A and B particles in the full model is equivalent 
to that of A particles in the two-species model. In both models only two 
"species" change their relative concentration: for the full model it is X 
particles and vacancies and for the two-species model it is X and A par- 
ticles. We also simulated this model on a square lattice ( d =  2, z = 4) and 
found that the system with parameters 1' now crosses over to the macro- 
scopic steady state, while that with parameters 2' behaves more or less like 
the corresponding one-dimensional system (see curves marked SIM Figs. 5 
and 6). 
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Fig. 4. Results of d =  1 (z = 2) simulations (SIM), solution of coupled differential equations 
[CH2), and solution of the macroscopic equations (MAC) for the evolution of the concentra- 
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We shall now attempt to solve for the dynamics of this two-species 
model using a Glauber-type ~tl master equation formulation similar to the 
one we used in ref. 9. We associate the X and A particles arranged on the 
sites i of a lattice of coordination number z with a set of N Ising spin-like 
variables a i =  + 1. We adopt the convention (ri= + 1 ( - 1 )  if an A (X) par- 
ticle is present at site i. We denote by {a} the configuration of Ising-like 
particles (a t ..... o~/ ..... a,v) and by {a'} the configuration {a, ..... - ~ /  ..... a:v) 
obtained by changing the state of the particle at site j. Starting from some 
arbitrary initial state, the evolution of the probability distribution 
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P ( { a } ; t )  of the set of variables { a } = ( a ,  ..... aj ..... aN) with time is 
described by the master equation ~ ~ 

ae({o};t) 
at - - Z  w;({o} --,{o'}, t )eI{o};t)  

J 

+ E  wi({ a'} -'* {a}, t) P ( { a ' } ; t )  (5) 
J 

where we denote by {a'} the state (at ..... - a ~  ..... aN) and w i({a} --* {a'}, t) 
represents the transition probability per unit time from the state { a} to the 
state {a'} at time t. 

The equation for the evolution of the average "magnetization" 
qk(t) = ( a , ( t ) )  is then given by ~lt'9~ 

dqk(t) 
2<ak(t) wk({a} -- {a'}, t)> (6) 

dt 

and similarly the time evolution of the pair correlation function rik(t)= 
(a j ( t )  ak( t ) )  is described by ( f o r j ~ k )  

drik(t)-- 2<a i ( t )ak ( t ) [w j ( {a  } ~ { a ' } , t ) + w k ( { a } - - * { a ' } , t ) ] >  (7) 
dt 

with j =  k corresponding to the trivial case r~i(t)= 1 for all t. 
Next we make the assumption of isotropy and 

invariance: thus 
translational 

qk(t) ---" q(t) = A(t)  -- X(t)  (8) 

is the concentration difference between the two species. Moreover, this 
implies that the pair correlation 

rik(t) = (a i ( t )  a~.(t)) = q2 + f,,(t) (9) 

depends only on the distance n = [ k - j l  between the sites with the fluctua- 
tion correlation f,,(t) being given by 

f , (  t) = (6a.i(t) 6ak(t) ) (10) 

So far the above formalism is completely general, i.e., we have made no 
assumptions about the nature of the local dynamics of the system as 
expressed in the form of the transition probabilities wj. Now we 
apply this formalism to our two-species Schl6gl model of Eq. (3) by 

82Z 86 5-6-26 
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assigning the appropriate form to the transition probabilities. We write the 
contribution to the evolution of the average concentration difference q(t) in 
two separate parts for the two steps (3) of the reaction: 

(~ )  : (~ )  l "Jr- (-~)2 (11) 

The flipping or transition probability w/a t  site j for the first reaction on a 
lattice of coordination number z can be written as 

_ ,  ~-kt +k'l k I-k '~ ] 
- = L - - 5 - -  + - - - 5 - -  - 

(12) 

where we/is the transition probability for k, = k', = 1 and is given by 

2 1 --a,~ 1 --a,~ 
u~'(aJ~ - a / )  z ( z -  1) ~ 2 2 (13) 

(J r 

with C/and c' i being two distinct nearest neighbors of the site j,  i.e., O :~ ~i~. 
This transition probability (12) is constructed to satisfy the conditions 

that it should be proportional to the probability of finding at least two X 
particles among the z neighbors { cj} of the particle at j and should also be 
proportional to k~ if the site j contains an A particle and to k'~ if it contains 
an X particle. 

Substituting Eq. (12) into Eq. (6) under the assumption (8) gives 

dq) 1 1 1 1 q3 = -~(k , -k '~)+-~(k , -3k '~)q+-~(k ,  +3k'~)q2--~(k, +k'~) 

1 1 
+~ (k, + k't)(Ji + J2 ) -~  (k, + k't) q( f~ + J)) + O(J~ 3) (14) 

withf j  andJ~, being the nearest neighbor and second neighbor correlations, 
respectively, defined in Eq. (10). 

On the other hand, the second (unimolecular) reaction X ~ A is a 
purely mean-field (MF) or macroscopic process in which the lattice and 
consequently the spatial fluctuations play no role. Thus the contribution of 
this process to (11) is given by 

dt/2 = (k,_ +k')  q + (k2 - k'_,) (15) 
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For simplicity, we shall truncate the hierarchy of moments beyond O(&r 3) 
and also neglect all pair fluctuation correlations f,, for 17 >~ 2 (thus assuming 
strong short-range correlations between particles). We shall deal only with 
the pair of coupled equations for q(t) and./'l(t) (seed ref. 9 for details on 
the efficacy of this truncation procedure). Putting together Eqs. (14) and 
(15) and truncating beyond f~, we get 

. . . .  1 4 dq l ( k , - k ' , - 4 k , - 4 k ' ) + ~ ( k , - 3 k ' t - 4 k . - 4 k ' ) q +  (k,+3k'~)q 2 
dt 4 . . . .  

1 a 1 
- ]  (k, +k',)q- + ~ ( k ,  +k',)(1 - q ) f ,  (16) 

In the MF limitf~ - ,  0 this reduces to the macroscopic evolution equation (4). 
The evolution of the nearest neighbor fluctuation correlation f~(t) 

contains no contribution from the second step, since this is a purely MF 
process. Thus we have [from Eqs. (7), (12), and (13)] the evolution equa- 
tion for fl(t)  = ri..J+ t ( t ) -  q2(t): 

2kl q2 2k~ = l ( k  ' l +2k',  q _ _ _  _ q3 
dt z - z z 

+ l ( k ,  + k ' l ) q  4 - z + 2  
z -~z (kl +k ' l ) f ,  

- - 2  -~__ 
+ - - ( k ~  +k'~)qfj + (k~ +k'l)q2f~ (17) 

Following the nomenclature used in ref. 9, we shall refer henceforth to the 
solution of this pair of coupled equations (16) and (17) as CH2. This solu- 
tion for the concentration X ( t ) = ~ [ 1 - q ( t ) ]  is shown for d =  l ( z=2)  in 
Figs. 3 and 4 and for d = 2 ( z = 4 )  in Figs. 5 and 6 along with the results 
of simulations for two different initial states. We observe a very good agree- 
ment between theory (CH2) and simulation, especially in terms of the 
steady state value of the concentration X(t ~ c~). 

This behavior, in particular the deviation from the macroscopic steady 
state for these systems, can be described in terms of an altered effective 
potential resulting from the nonnegligible value of the fluctuation correla- 
tionsf,,(t) at low dimension. The evolution equation for X(t) can be written 
in the simplified form [from Eq. (16)] 

dX 8Vo(X) 1 
dt 8X 2 (k, +k't) XJ~ (18) 
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In the simplest approximation where the fluctuation correlation f~(t) is 
assigned a fixed value, we can describe the dynamics of the system via the 
effective potential Vcn-(X)= Vo(X)+ Vn(X), where the contribution from 
fluctuations is Vn(X)= �88 + k't) X2f~. A quick look at Fig. 7 is enough to 
see that the effective potential indeed describes qualitatively the anomalous 
dynamics of the low-dimensional system. For parameter set 1' (left graph), 
the fluctuation term leads to a crossover from a bistable potential to one 
with a unique stable state at X~ =0.  For parameter set 2' (right graph), 
again one sees a crossover in the form of the potential, this time to one 
with a unique stable state clearly below the macroscopic lower stable state 
at X, =0.1. 

4. FLUCTUATION CORRELATIONS AS MULTIPLICATIVE 
NOISE 

We now take a brief look at the form of the nn fluctuation correlation 
f~(t) as determined from simulations and from the solution (CH2) of the 
coupled pair of Eqs. (16) and (17). A comparison of Fig. 8 for the full 
Schl6gl model and Fig. 9 for the two-species model for equivalent 
parameters (the same macroscopic potential) indicates the same qualitative 
behavior of the fluctuation correlations, though a difference in magnitude. 
However, the average (asymptotic) values off~ for the two-species model 
are considerably lower than those at which a transition to a monostable 
potential takes place. For example, for parameter set 1' in the left graph of 
Fig. 9 the asymptotic value is f t ( t  --* co ) = 0; however, it requires a value 
f t  ~- 0.3 (see left graph of Fig. 7) for the transition to take place. Again, for 
parameter set 2' in the right graph of Fig. 9 we havef~(t ~ oo) ___ 0.01 from 
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simulations, but once again it requires f~ = 0.03 (see right graph of Fig. 7) 
for a transition to a monostable potential. 

We attribute this discrepancy to the significant short-time transient 
magnitude of the fluctuation correlation in Fig. 9. We shall now proceed to 
treat this transient as a perturbation about the asymptotic value f , (oo) .  
Thus we write 

f , ( t )  = f , ( oo )  + ~l(t)  (19)  

where we shall assume the ~(t) to be Gaussian white noise, i.e., 

( ~,(t) ~j(t')) =e ,d( t - t ' )  do (20) 

with e~ = a 2, cr being the width of the Gaussian distribution from which 
~t(t) is taken randomly. The width cr is to be compared with the width of 
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the distribution of transient values of f ,(t) obtained from simulations in 
Figs. 9 and I0, as we shall do later in this section. 

Thus we now write the evolution equation (18) in the form 

dX  
= f(X) + s o(t) + g(X) ~ ,(t) (21) 

where f (X)=-OV/OX and the multiplicative noise function is g(X)= 
- (k, + k' I ) )(/2. The potential 

I v( x )  = v,,( x )  + ~( k , + k', ) X ' - f  ,( ov ) (22) 

with Vo(X) given by Eq. (4) now contains the constant part of the total 
effective potential. An additive Gaussian white noise (o(t) obeying Eq. (20j 
has been included in Eq. (21) to avoid singularities at the zeros of the 
multiplicative noise function g(X), in this case at X=0.  Since additive 
noise does not change the positions of the minima of the potential, this 
inclusion does not affect our results. Adopting the Stratonovich stochastic 
differential equation convention ~ ~2) (for white noise as the limit of a more 
general and realistic noise), we find that the evolution of the probability 
distribution corresponding to Eq. (21) is given by the following Fokker- 
Planck equation: 

OP(X, t) 0 
~t OX 

t o 0 2 
[K(X) P(X, t)] +~-~2_, P(X, t) + ~1 02 ' X  

2-b-~- '  [ g - (  ) p ( x ,  t ) ]  

(23) 
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where K ( X ) = f ( X ) +  �89 g'(X). The steady-state solution of Eq. (23) 
is then 

P~ ,)= exp [2 ~x f(z)--_!e_l_/2!g(z__~)g'(z)dz] =exp [ Ver (24) 
eO + el g2(z)  8 0 J 

where the effective potential for the Fokker-Planck equation with multi- 
plicative noise is given by tl31 

f .v eo(f(z) - (el/2) g(z) g'(z)) & (25) 
Ve,r(X ) = 2 e o + e, g2(z) 

F o r f ( z )  and g(z), taking the forms given above in (21) and (22), we obtain 

[k~+k'~ k2+k" (k~+k'j)f~(oo) el(kl+k'~) 2] 
Ven(X) = [ 2fl y 2fl 4fl 81/ ln(1 + f i x  2) 

(k, 
~ 2  1/t/2j tan- '(1/ '"2X) 

kl +k'l X2 kl k l+k ' l  (26) 
21/ + 7 X 21/2 

where f l=e,(kt "bk'])2/4c0 �9 The form of this effective potential Vetr(X) is 
plotted in Fig. 11 on the left for parameter set 1' [w i th f l ( t  ~ ~ ) = 0  from 
the left graph of Fig. 9], and a transition to a monostable potential with 
stable state at Xi = 0 is observed between a - 0.3 and a - 0.4. This is con- 
sistent with the widths of the distribution of transient values of the fluctua- 
tion correlation J~ at d = 2  ( a ~ 0 . 3 )  and d = l  ( a~0 .4 ) ,  from the left 
graphs of Figs. 10 and 9, and with the transition fi'om the macroscopically 
more stable steady state at X 3 for d =  2 to the macroscopically less stable 
one at X, = 0 for d = 1 as observed in Figs. 5 and 3, respectively. Likewise 
for parameter set 2' the transition to a monostable potential occurs at a 
critical width a,. " 0.09 of the transient fluctuation correlation distribution. 
In Fig. I1 the potential is plotted for parameter set 2' on the right for a 
value a ~ 0.12 just above the transition and another a ~ 0.20 corresponding 
to d =  2 (see right graph of Fig. 10) to show that the fluctuation correla- 
tions are large enough even in d = 2  to change the steady state and also 
make the potential monostable. This is consistent with the results from 
simulations (Figs. 4 and 6), indicating that the crossover to macroscopic 
behavior occurs at a dimension greater than two and the corresponding 
effective potential V~,r has a unique stable state for both d =  1 and d =  2. 
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Fig. 11. Effective potential with multiplicative noise: parameter sets I' (left) and 2' (right), 
eo=0.001 for two different values of the width a of the noise distribution corresponding to 
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Moreover, this stable state corresponds to a concentration X~n-that is not 
a stable state of ttie macroscopic potential and lies somewhat below the 
macroscopically less stable state X~ = 0.1 (see Fig. 11 ), again in very good 
agreement with simulational results shown in Figs. 4 and 6. 

We have thus presented an analysis of the modification of the effective 
potential and the resulting steady states and dynamics of the bistable 
Schl6gl-type models in low spatial dimension. We see that this description 
of the transient fluctuation correlations as Gaussian white noise gives, in 
addition to the qualitative analysis of Section 3, a reasonable quantitative 
agreement with simulations. 

5. THE FIRST SCHLOGL MODEL AND ITS TWO-SPECIES 
EQUIVALENT 

The first Schl6gl model, given by the reactions of Eq. (1) with n = 2, 
again with concentrations A and B kept constant by contact with a reser- 
voir, is described by the macroscopic evolution equation 

0 Vo(X) dX _k , tX2  + o L X _ k 2 X +  y = (27) 
dt OX 

where o~=klA and ?~=k'B. For ) , = 0  the steady state at X2=(ct-k2)/k't 
is stable for k2 < e and unphysical as well as unstable otherwise. X~ = 0 
becomes stable for k2/> 0c The transcritical bifurcation diagram for ), = 
k~ = 0 is shown by solid lines in Fig. 12. The other parameter values are 
kt = 14.0, k'~ = 1.0, A = 0.05, and B = 0.05. 
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Fig. 12. Steady-state values of concentration for Schl6gl's first model vs. reaction rate k2: 
from macroscopic theory (MAC),  full Schl6gl model I in d =  1 [SIMF(1) ] ,  two-species 
bimolecular model for d =  I [ S I M T ( I ) ]  and d = 2  [SIMT(2) ]  from simulations, and from 
CH2 in d =  1 and d =  2. Solid line indicates the stable state and dotted line the unstable state 
for the macroscopic case. The parameters used are k~ = 14.0, k'l = 1.0, k'2 = 0, A = 0.05, and 
B = 0.05 for the full Schl6gl model and the equivalent ones k) = 0.7, k'~ = 0.3 and k'2 = 0 for the 
two-species model. 

On the other hand, simulations using the same parameters show that 
in d = 1 the state -Yt = 0 becomes stable already at a value of k ,  ~ 0.04 far 
below a = 0 . 7  (see again Fig. 12). 

In the above simulations the concentrations A and B are maintained 
constant in the same way as was done for model II  discussed in Section 3. 

Now we shall proceed to analyze this behavior in terms of the corre- 
sponding two-species model as we did in the preceding sections for 
Schl6gl's second model. In analogy with (3), this consists of the reaction 
steps 

kl 
A + X ,  "2X 

kl 

k2 
X ,  "A k'., (28) 

once again consisting of only A and X particles on a fully occupied lattice, 
A = 1 - X .  The macroscopic evolution equations are 

dX (29) dt - (k) +k'~) X2 + ( k t - k ~ - k [ ) _  X+k'=_ OV~ 

Thus, for macroscopic behavior to be equivalent to the full model (27) it 
suffices to substitute parameters k'~ ~ k t -t- k'l, 0~ --~ k~ - k~, and 7' --* k ' .  
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This model with equivalent parameters (see Fig. 12) also shows a 
transition to a stable state of X~ = 0 at a value of k2 2 0.12 for d = l(z = 2) 
and k2---0.31 for d = 2 ( z = 4 ) ,  both significantly below the macroscopic 
one of k 2 = 0.7. 

We now solve the master equation (5) for this model using the 
methodology of Section 3. The transition probability % for the first reac- 
tion in (28) on a lattice of coordination number z can again be written in 
the form (12), where now w.~? is given by 

1 1 - a v 
w~(~ --* - ~ f l  =27 E 2 (30) 

and constructed to obey the conditions that it should be proportional to 
the probability of finding at least one X particle among the z neighbors of 
the particle at j and should also be proportional to k~ if the site j contains 
an A particle and to k'~ if it contains an X particle. Substituting (30) in the 
expression (6) while once again assuming spatial isotropy, we obtain in 
analogy with (14) 

dq ) 1 1 q2 -~ = - ~ ( k , - k ' , ) - k ' , q + - ~ ( k ,  +ki)  

1 
+ :  (k, +k't )(f, +f_,) (31) 

z 

The second (unimolecular) reaction X ~--A contributes the same as before 
as given in Eq. (15). Once again we shall deal only with the pair of coupled 
equations for the average concentration difference q(t) and the average nn 
fluctuation correlation f ,( t) ;  these are [from Eqs. (31) and (15)] 

dq 1 
dt 2 

(k, -k'~ - 2k2 + 2k" )-(k'~ + k2 +k '_ , )q+~(k ,  + k't) q2 

+~(k,  +k'~) f ,  (32) 

and [substituting Eq. (31) in Eqs. (7) and (9)] 

4, 1 1 1 
- ( k , - k ' a ) + - ( k ,  +kl )  q+~q'-  

dt z z . 

- l  (k, +k'~)q3-(k ,  +k'~) f ,  (33) 
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The solution of this coupled system for d =  l ( z = 2 )  yields the same 
results as simulations for the value of k 2 = 0.12 at which the crossover of 
stable states occurs (see Fig. 12) to X~ =0.  For d =  2(z =-4) the transition 
occurs at a somewhat lower value of k2 - 0.23 according to the solution of 
the coupled system of equations (32) and (33). 

We can once again write the evolution equation (32) in the simplified 
form of Eq. (18) as follows: 

dX O Vo( X) 1 
- OX 4(k~ +k'j)f~ (34) dt 

Inserting the steady-state value o f f t  (see Fig. 13) into the effective 
potential V~n.(X)= V d X ) +  Vn(X) of this dynamics as was done at the end 
of Section 3 for the trimolecular model, we identify the contribution from 
fluctuations to be of the form [from Eq. (34)] V~I(X) = ~(kl +k'l)  Xfl. The 
form of the resulting effective potential for a time-independent f~ corre- 
sponding to the asymptotic valuef~(t--* oo) for the d =  l(z = 2) case shown 
in Fig. 13 is depicted on the right of Fig. 14. Results of simulations as well 
as CH2 displayed on the left of Fig. 14 indicate that the stable state is 
shifted to lower concentrations as compared to the macroscopic one, in 
agreement with the corresponding effective potential plotted on the right of 
the same figure. Since the noise term that would be obtained by substitut- 
ing Eq. (19) in Eq. (34) is purely additive, it does not change further the 
position of the minima of the potential and is thus irrelevant for the purpose 

Fig. 13. 
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Evolution of fluctuation correlations]iU) for d= 1 for the same rates as in Fig. 12 
with k~ =0.1. 
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Fig .  14. E v o l u t i o n  o f  a v e r a g e  c o n c e n t r a t i o n  X(t) fo r  t h e  b i m o l e c u l a r  t w o - s p e c i e s  m o d e l  f r o m  
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F ig .  13. T h e  r i g h t  g r a p h  s h o w s  t h e  c o r r e s p o n d i n g  m a c r o s c o p i c  p o t e n t i a l  I/o a n d  t h e  e f fec t ive  
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of this study. Indeed, the substitution of the stationary value of f~ in 
Eq. (34) already describes the behavior observed in the simulations. It is to 
be emphasized, however, that the asymptotic value f t  (t ~ co) is a function 
of the parameters and the value of X from the coupled equations (32) and 
(33). It decreases with k2 and is zero for k2 >~,  where the validity of the 
macroscopic equation (29) is restored and X~ = 0  is the absorbing state. 
Moreover, the variation of the term Vn(X)= :~(k~ + k'~) X f  t(t ~ oc ) with k,  
determines the form of the transition in Fig. 12: as k2 increases, the macro- 
scopic minimum X2 comes closer to X~ = 0 and the minimum of V~n- at X~n- 
becomes shallower (see right of Fig. 14 with X~a.=0.5). At a critical value 
of k2, X 2 -  X~ becomes small enough for the additive fluctuation term Vt~ 
to be enough to make the minimum at X~n-disappear altogether in favor 
of one at Xj = 0, thus leading to the sharp transition shown in Fig. 12. This 
is in contrast to the macroscopic case, where the minimum shifts con- 
tinuously toward X =  0. 

Thus we find that the nature of the transition at k~ = 0 between non- 
zero and zero stable-state concentrations marked by the transcritical bifur- 
cation for the macroscopic version of Schl6gl's first (bimolecular) model is 
somewhat different on a low-dimensional lattice. The bifurcation subsists, 
but the linear relation X2 = ( c t -  k2)/k'~ for the steady-state value of the con- 
centration is replaced by a curve of the form shown in Fig. 12 with a sharp 
transition to a stable state of X = 0  at a critical value of k2 that is con- 
siderably lower than the macroscopic one, k2=ct. This critical value 
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increases in going from d = 1 to d = 2, however, and we expect the curves 
to approach continuously the macroscopic line as d is increased. We have 
modeled this behavior by an effective potential that contains an additional 
term linear in X and proportional to the nn fluctuation correlation f~. 

6. C O N C L U S I O N  

We have analyzed the anomalous behavior of some prototype non- 
equilibrium models of the Schl6gl type when embedded in lattices of 
low spatial dimension. Starting from a Glauber-type master equation sup- 
plemented by a truncation procedure, we have obtained evolution equa- 
tions that incorporate the role of fluctuation correlations. These equations 
also led us to introduce an effective potential that determines the steady 
states and dynamics of the system when the fluctuation correlations are 
appreciable--typically, when the spatial dimension is low. 

We find that the transcritical bifurcation for bimolecular models of the 
Schl6gl type I is modified at low dimension and occurs at significantly 
lower values of k 2. This transition between a steady state at nonzero con- 
centration X2 to one at X~ = 0 is more abrupt as compared to the macro- 
scopic case owing to the interplay between the fluctuation correlations and 
the macroscopic potential as a function of k2 in the form of the effective 
potential. On the other hand, for model ]I we find that the bifurcation to 
a bistable regime can disappear altogether, the system being attracted by a 
unique stable state. More specifically, this unique stable state has been 
found to be at X =  0 for the case k~ = 0 (where X~ = 0 is stable also for the 
macroscopic case, but of much lower stability than the stable state X3 at 
higher concentration). For  the case k" q:0 the new unique stable state is 
found to be at a lower concentration than that of the lower stable state X~ 
of the macroscopic equations. We note that the transition to this mono- 
stable potential depends on the magnitude of the fluctuation correlation f~ 
and thus is not important for higher dimensional systems, where f~ 
becomes negligible. Already, for the two-species model at k " - - 0  we find 
that there is a crossover at k2 -~ 0.02 from monostable to bistable behavior 
between d =  1 and d = 2  and the stable states for the d = 2  system are 
the same as the macroscopic ones for low values of k2. For  the full model 
this crossover seems to occur at k_,-~ 0. Thus we believe that the critical 
dimension is d , .~2  for the crossover to bistable behavior at k'_,=0. 
Below this dimension the behavior is described by a monostable potential 
for all values of k~, k'~, and k2. However for k~,r the potential is 
monostable for d =  2 for the entire range of parameter values for the two- 
species model as well as for the full model and the crossover must occur for 
d,. >/2. To demonstrate this, we have used parameters sets I, 1', 2, 2' such 
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that macroscopically the stable state at lower concentration is just barely 
stable, with the one at higher concentration being highly stable, so that a 
transition to macroscopic behavior can be discerned as soon as it sets in. 

We did not see any evidence in model II of a transcritical bifurcation 
of the type that occurs in model I and was observed in ref. 4 also for model 
II at low dimension. In contrast to ref. 4, where a sharp transition from one 
unique steady state to another is observed when k2 is varied with k~, = 0 for 
d < 4 ,  we observe only a single steady state for dimensions d~<2, with 
bistability just appearing at d = 2. Moreover, the type of transition observed 
in ref. 4 would not be consistent with our picture of a modified quartic 
potential in which the bistable regime disappears in the presence of signifi- 
cant fluctuation correlation to yield a unique stable state at low (for k'_, :/: 0) 
or zero (for k~ =0)  concentration. Presumably, the difference with the 
results of ref. 4 are due to the different ways of modeling the reactive steps 
and the different assumptions on the allowed occupations of the lattice sites 
by A, B, and X particles. In particular, the reactions are implemented in ref. 
4 on a single site and thus some of the lattice constraints are not incor- 
porated. On the other hand, ref. 14 does incorporate these constraints, but 
their interest is in identifying a model that exhibits a first-order transition 
in one dimension of the type exhibited by model II macroscopically. By 
contrast, our interest has been to study the change in the behavior of the 
original Schl6gl models on the incorporation of lattice constraints. 

The work reported in this paper can be extended in several directions. 
Of special interest would be to assess the role of dimensionality in systems 
giving rise to bifurcation of time-periodic solutions or to chaotic dynamics. 
Furthermore, the role of fluctuations on propagating fronts joining coexisting 
stable states would be another interesting area to explore in this context. 
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